
Tree-Based Methods

Last modified on March 13, 2025 12:20:44 Eastern Daylight Time

Crediting the materials

The descriptions of tree-based methods in this document are taken primarily from An
Introduction to Statistical Learning with Applications in R while most of the coding ideas
for tidymodels are gleaned from Tidy Modeling with R: A framework for Modeling in
the Tidyverse.

Advantages and Disadvantages of Trees

Pros

• Trees are very easy to explain to people. In fact, they are even easier to explain than
linear regression!

• Some people believe that decision trees more closely mirror human decision-making than
do regression and classification approaches.

• Trees can be displayed graphically, and are easily interpreted even by a non-expert (es-
pecially if they are small).

• Trees can easily handle qualitative predictors without the need to create dummy variables
(model.matrix()).

Cons

• Trees generally do not have the same level of predictive accuracy as some of the other
regression and classification approaches.

1

https://www.statlearning.com/
https://www.statlearning.com/
https://www.tmwr.org/
https://www.tmwr.org/

• Trees suffer from high variance. This means if we split the training data into two parts
at random, and fit a decision tree to both halves, the results that we get could be quite
different. In contrast, a procedure with low variance will yield similar results if applied
repeatedly to distinct data sets.

How do we improve on a single tree?

By aggregating many decision trees, using methods like bagging, random forests, and
boosting, the predictive performance of trees can be substantially improved!

The Basics of Decision Trees

Decision trees can be applied to both regression and classification problems. We first
consider regression problems, and then move on to classification problems.

Predicting Baseball Players’ Salaries Using Regression Trees

We use the Hitters data set to predict a baseball player’s Salary based on Years (the number
of years that he has played in the major leagues) and Hits (the number of hits that he made
in the previous year). We first remove observations that are missing Salary values, and log-
transform Salary so that its distribution has more of a typical bell-shape. (Recall that Salary
is measured in thousands of dollars.)

library(tidymodels)
library(tidyverse)
library(ISLR2)
library(janitor) # standardize variable names
tidymodels_prefer()
Hitters <- na.omit(Hitters) |>
clean_names() |>
as_tibble()

names(Hitters)

[1] "at_bat" "hits" "hm_run" "runs" "rbi"
[6] "walks" "years" "c_at_bat" "c_hits" "c_hm_run"
[11] "c_runs" "crbi" "c_walks" "league" "division"
[16] "put_outs" "assists" "errors" "salary" "new_league"

2

ggplot(data = Hitters, aes(x = salary)) +
geom_histogram(bins = 10, color = "black", fill = "purple") +
theme_bw() -> p1

ggplot(data = Hitters, aes(x = log10(salary))) +
geom_histogram(bins = 10, color = "black", fill = "purple") +
theme_bw() -> p2

library(patchwork)
p1/p2

0

20

40

60

80

0 1000 2000
salary

co
un

t

0

10

20

30

40

50

2.0 2.5 3.0 3.5
log10(salary)

co
un

t

Put salary on log10 scale
Hitters <- Hitters |>
mutate(salary = log10(salary))

We start by creating a tree “specification” using the parsnip package which was loaded with
the tidymodels bundle.

tree_spec <- decision_tree() |>
set_engine("rpart") |>
set_mode("regression")

tree_spec

Decision Tree Model Specification (regression)

3

Computational engine: rpart

With a model specification and data we are ready to fit a model. The first model we will
consider uses both year and hits as predictors.

tree_fit <- tree_spec |>
fit(salary ~ years + hits, data = Hitters)

When we look at the model output, we see an informative summary of the model.

tree_fit

parsnip model object

n= 263

node), split, n, deviance, yval
* denotes terminal node

1) root 263 39.0716200 2.574160
2) years< 4.5 90 7.9883020 2.217851

4) years< 3.5 62 4.3397050 2.124487
8) hits< 114 43 3.2338760 2.053078 *
9) hits>=114 19 0.3903227 2.286097 *

5) years>=3.5 28 1.9114650 2.424585 *
3) years>=4.5 173 13.7130700 2.759523

6) hits< 117.5 90 5.2988020 2.605063
12) years< 6.5 26 1.3651130 2.470669 *
13) years>=6.5 64 3.2733010 2.659661

26) hits< 50.5 12 0.5072597 2.488515 *
27) hits>=50.5 52 2.3334350 2.699156 *

7) hits>=117.5 83 3.9387920 2.927009 *

Once the tree gets more than a couple of nodes, it can become hard to read the printed diagram.
The rpart.plot package provides functions to let us easily visualize the decision tree. The
function rpart.plot only works with rpart trees so we will use the extract_fit_engine()
from the parsnip package.

tree_fit |>
extract_fit_engine() |>

4

rpart.plot::rpart.plot(roundint = FALSE)

years < 4.5

years < 3.5

hits < 114

hits < 118

years < 6.5

hits < 51

2.6
100%

2.2
34%

2.1
24%

2.1
16%

2.3
7%

2.4
11%

2.8
66%

2.6
34%

2.5
10%

2.7
24%

2.5
5%

2.7
20%

2.9
32%

yes no

Figure 1: Tree Model for predicting salary based on years and hits

Print Rules
tree_fit |>
extract_fit_engine() |>
rpart.plot::rpart.rules(roundint = FALSE)

salary
2.1 when years < 3.5 & hits < 114
2.3 when years < 3.5 & hits >= 114
2.4 when years is 3.5 to 4.5
2.5 when years is 4.5 to 6.5 & hits < 118
2.5 when years >= 6.5 & hits < 51
2.7 when years >= 6.5 & hits is 51 to 118
2.9 when years >= 4.5 & hits >= 118

Tip

Each node in Figure 1 shows:

• the predicted value,
• the percentage of observations in the node.

5

For example, all observations (100%) are in the first node and the top number (2.6) is the aver-
age salary (in log10) of all players in Hitters. That is 102.574160 = 375.1112 and remembering
that salary is in thousands of dollars, the average salary for all 263 players is $375,111.
Moving to the left for players with fewer than 4.5 years in the league we see that note contains
34% of the players and their predicted salary is 102.217851 × 1000 = $165,140.

Next we consider a model that uses all of the variables in Hitters.

tree_fit2 <- tree_spec |>
fit(salary ~ ., data = Hitters)

tree_fit2 |>
extract_fit_engine() |>
rpart.plot::rpart.plot(roundint = FALSE)

c_at_bat < 1452

c_hits < 182

at_bat >= 173

c_runs < 59

hits < 118

walks < 44 crbi < 273

walks < 61

2.6
100%

2.2
39%

2.1
21%

2
19%

1.9
10%

2.1
9%

2.4
3%

2.4
18%

2.8
61%

2.7
27%

2.6
19%

2.8
7%

2.9
34%

2.7
8%

3
27%

2.9
15%

3.1
11%

yes no

Figure 2: Tree Model for predicting salary based on all predictors in Hitters

Evaluating the Performance of your Model

To evaluate model performance, we will use the metrics() function from the yardstick
package which was loaded with the tidyverse bundle.

augment(tree_fit2, new_data = Hitters) |>
metrics(truth = salary, estimate = .pred) -> R1

6

R1 |>
knitr::kable()

.metric .estimator .estimate
rmse standard 0.1823249
rsq standard 0.7762381
mae standard 0.1339507

The mean absolute error (mae) is 100.1339507 ⋅ 1000 = $1,361.29 and the model’s 𝑅2 value is
77.62% which is not bad. However, this model was fit on the entire data set and the model
is likely overfitting the data. Next we refit the model using a training set and tune the
model’s complexity parameter (cost_complexity). After tuning the cost_complexity, we
evaluate the model’s performance on the test set to get an idea of how the model will perform
on data it has not seen.

Splitting the Data

set.seed(314)
hitters_split <- initial_split(Hitters)
hitters_train <- training(hitters_split)
hitters_test <- testing(hitters_split)
dim(hitters_train)

[1] 197 20

dim(hitters_test)

[1] 66 20

hitters_folds <- vfold_cv(hitters_train, v = 10, repeats = 5)

tree_spec <- decision_tree(cost_complexity = tune()) |>
set_engine("rpart") |>
set_mode("regression")

tree_spec

7

Decision Tree Model Specification (regression)

Main Arguments:
cost_complexity = tune()

Computational engine: rpart

tree_recipe <- recipe(formula = salary ~ ., data = hitters_train)
tree_wkfl <- workflow() |>
add_recipe(tree_recipe) |>
add_model(tree_spec)

set.seed(8675)
tree_tune <-
tune_grid(tree_wkfl, resamples = hitters_folds, grid = 15)

tree_tune

Tuning results
10-fold cross-validation repeated 5 times
A tibble: 50 x 5

splits id id2 .metrics .notes
<list> <chr> <chr> <list> <list>

1 <split [177/20]> Repeat1 Fold01 <tibble [30 x 5]> <tibble [0 x 3]>
2 <split [177/20]> Repeat1 Fold02 <tibble [30 x 5]> <tibble [0 x 3]>
3 <split [177/20]> Repeat1 Fold03 <tibble [30 x 5]> <tibble [0 x 3]>
4 <split [177/20]> Repeat1 Fold04 <tibble [30 x 5]> <tibble [0 x 3]>
5 <split [177/20]> Repeat1 Fold05 <tibble [30 x 5]> <tibble [0 x 3]>
6 <split [177/20]> Repeat1 Fold06 <tibble [30 x 5]> <tibble [0 x 3]>
7 <split [177/20]> Repeat1 Fold07 <tibble [30 x 5]> <tibble [0 x 3]>
8 <split [178/19]> Repeat1 Fold08 <tibble [30 x 5]> <tibble [0 x 3]>
9 <split [178/19]> Repeat1 Fold09 <tibble [30 x 5]> <tibble [0 x 3]>
10 <split [178/19]> Repeat1 Fold10 <tibble [30 x 5]> <tibble [0 x 3]>
i 40 more rows

autoplot(tree_tune) +
theme_bw()

8

rsq

rmse

1e−08 1e−05 1e−02

0.210

0.215

0.220

0.64

0.65

0.66

0.67

0.68

Cost−Complexity Parameter

T1 <- show_best(tree_tune, metric = "rmse")
T1 |>
knitr::kable()

cost_complexity .metric .estimator mean n std_err .config
0.0072956 rmse standard 0.2071888 50 0.0074622 Preprocessor1_Model15
0.0014759 rmse standard 0.2111109 50 0.0076167 Preprocessor1_Model10
0.0000000 rmse standard 0.2111731 50 0.0076002 Preprocessor1_Model01
0.0000024 rmse standard 0.2111731 50 0.0076002 Preprocessor1_Model02
0.0000000 rmse standard 0.2111731 50 0.0076002 Preprocessor1_Model03

select_best(tree_tune, metric = "rmse") -> tree_param
tree_param

A tibble: 1 x 2
cost_complexity .config

<dbl> <chr>
1 0.00730 Preprocessor1_Model15

9

final_tree_wkfl <- tree_wkfl |>
finalize_workflow(tree_param)

final_tree_wkfl

== Workflow ==
Preprocessor: Recipe
Model: decision_tree()

-- Preprocessor --
0 Recipe Steps

-- Model ---
Decision Tree Model Specification (regression)

Main Arguments:
cost_complexity = 0.00729563631837862

Computational engine: rpart

final_tree_fit <- final_tree_wkfl |>
fit(hitters_train)

We used 10 fold cross validation repeated 5 times to determine the best value of 𝛼 = 0.0072956
(cost_complexity) based on the model with the smallest 𝑅𝑀𝑆𝐸 (0.2071888). Then we
created the final model (final_tree_fit) using cost complexity pruning and show the model
in Figure 3.

final_tree_fit |>
extract_fit_engine() |>
rpart.plot::rpart.plot(roundint = FALSE)

10

c_at_bat < 1258

c_runs < 68

years < 4.5

crbi < 308

c_hits < 450

c_walks >= 179

at_bat < 424

runs < 34 put_outs < 839

walks < 66

2.6
100%

2.2
32%

2
14%

2.3
18%

2.2
13%

2.4
6%

2.8
68%

2.7
25%

2.5
10%

2.7
16%

2.6
9%

2.8
7%

2.9
43%

2.7
17%

2.6
7%

2.8
10%

3
26%

2.9
21%

2.9
15%

3
7%

3.2
5%

yes no

Figure 3: Final tree model after tuning the cost complexity parameter

vip::vip(final_tree_fit) +
theme_bw()

runs

c_hm_run

hits

at_bat

years

c_walks

crbi

c_runs

c_hits

c_at_bat

0 5 10 15 20
Importance

11

Evaluating the Perfomance of your Final Tuned Model on the Test set

augment(final_tree_fit, new_data = hitters_test) |>
metrics(truth = salary, estimate = .pred) -> R2

R2 |>
knitr::kable()

.metric .estimator .estimate
rmse standard 0.2871821
rsq standard 0.5387941
mae standard 0.1844385

augment(final_tree_fit, new_data = hitters_test) |>
ggplot(aes(x = salary, y = .pred)) +
geom_abline(lty = "dashed") +
coord_obs_pred() +
geom_point(alpha = 0.5) +
theme_bw() +
labs(x = "Salary (log10) dollars",

y = "Predicted Salary (log10) dollars",
title = "R-squared Plot")

2.0

2.5

3.0

2.0 2.5 3.0
Salary (log10) dollars

P
re

di
ct

ed
 S

al
ar

y
(lo

g1
0)

 d
ol

la
rs

R−squared Plot

12

Unfortunately, the model does not perform that well on the test set. The final tuned model has
an 𝑅𝑀𝑆𝐸 value of $1,937.23, an 𝑅2 value of 53.88% and a mean absolute error of $1,529.11.

Bagging

Decision trees suffer from high variance. This means that if we split the training data into
two parts at random, and fit a decision tree to both halves, the results that we get could be
quite different. In contrast, a procedure with low variance will yield similar results if applied
repeatedly to distinct data sets; linear regression tends to have low variance, if the ratio of 𝑛
to 𝑝 is moderately large. Bootstrap aggregation, or bagging, is a general-purpose procedure
for reducing the variance of a statistical learning method; we introduce it here because it is
particularly useful and frequently used in the context of decision trees.

library(baguette)
bag_spec <-
bag_tree(cost_complexity = tune(), min_n = tune()) |>
set_engine('rpart') |>
set_mode('regression')

bag_recipe <- recipe(formula = salary ~ ., data = hitters_train)
bag_wkfl <- workflow() |>
add_recipe(bag_recipe) |>
add_model(bag_spec)

bag_wkfl

== Workflow ==
Preprocessor: Recipe
Model: bag_tree()

-- Preprocessor --
0 Recipe Steps

-- Model ---
Bagged Decision Tree Model Specification (regression)

Main Arguments:
cost_complexity = tune()
min_n = tune()

Computational engine: rpart

13

set.seed(8675)
bag_tune <-
tune_grid(bag_wkfl, resamples = hitters_folds, grid = 15)

bag_tune

Tuning results
10-fold cross-validation repeated 5 times
A tibble: 50 x 5

splits id id2 .metrics .notes
<list> <chr> <chr> <list> <list>

1 <split [177/20]> Repeat1 Fold01 <tibble [30 x 6]> <tibble [0 x 3]>
2 <split [177/20]> Repeat1 Fold02 <tibble [30 x 6]> <tibble [0 x 3]>
3 <split [177/20]> Repeat1 Fold03 <tibble [30 x 6]> <tibble [0 x 3]>
4 <split [177/20]> Repeat1 Fold04 <tibble [30 x 6]> <tibble [0 x 3]>
5 <split [177/20]> Repeat1 Fold05 <tibble [30 x 6]> <tibble [0 x 3]>
6 <split [177/20]> Repeat1 Fold06 <tibble [30 x 6]> <tibble [0 x 3]>
7 <split [177/20]> Repeat1 Fold07 <tibble [30 x 6]> <tibble [0 x 3]>
8 <split [178/19]> Repeat1 Fold08 <tibble [30 x 6]> <tibble [0 x 3]>
9 <split [178/19]> Repeat1 Fold09 <tibble [30 x 6]> <tibble [0 x 3]>
10 <split [178/19]> Repeat1 Fold10 <tibble [30 x 6]> <tibble [0 x 3]>
i 40 more rows

autoplot(bag_tune) +
theme_bw()

14

Cost−Complexity Parameter (log−10) Minimal Node Size

rm
se

rsq

−10.0 −7.5 −5.0 −2.5 10 20 30 40

0.18

0.19

0.20

0.21

0.22

0.63

0.66

0.69

0.72

0.75

show_best(bag_tune, metric = "rmse")

A tibble: 5 x 8
cost_complexity min_n .metric .estimator mean n std_err .config

<dbl> <int> <chr> <chr> <dbl> <int> <dbl> <chr>
1 0.000000164 12 rmse standard 0.181 50 0.00787 Preprocessor1_Mo~
2 0.000000720 23 rmse standard 0.181 50 0.00769 Preprocessor1_Mo~
3 0.0000611 15 rmse standard 0.181 50 0.00806 Preprocessor1_Mo~
4 0.0000000001 29 rmse standard 0.181 50 0.00754 Preprocessor1_Mo~
5 0.00000000193 21 rmse standard 0.182 50 0.00771 Preprocessor1_Mo~

bag_param <- select_best(bag_tune, metric = "rmse")
bag_param <- tibble(cost_complexity = 0.002470553, min_n = 28)
final_bag_wkfl <- bag_wkfl |>
finalize_workflow(bag_param)

final_bag_wkfl

== Workflow ==
Preprocessor: Recipe
Model: bag_tree()

-- Preprocessor --

15

0 Recipe Steps

-- Model ---
Bagged Decision Tree Model Specification (regression)

Main Arguments:
cost_complexity = 1.63789370695406e-07
min_n = 12

Computational engine: rpart

final_bag_fit <- final_bag_wkfl |>
fit(hitters_train)

final_bag_fit

== Workflow [trained] ==
Preprocessor: Recipe
Model: bag_tree()

-- Preprocessor --
0 Recipe Steps

-- Model ---
Bagged CART (regression with 11 members)

Variable importance scores include:

A tibble: 19 x 4
term value std.error used
<chr> <dbl> <dbl> <int>

1 c_at_bat 19.2 0.571 11
2 c_runs 19.2 0.655 11
3 c_hits 18.9 0.579 11
4 crbi 16.5 0.526 11
5 c_walks 15.5 0.609 11
6 years 10.4 1.03 11
7 c_hm_run 3.29 1.43 11
8 at_bat 2.61 0.277 11
9 hits 2.49 0.254 11
10 runs 2.28 0.208 11
11 rbi 2.00 0.206 11

16

12 put_outs 1.47 0.285 11
13 hm_run 1.06 0.179 11
14 walks 0.955 0.145 11
15 assists 0.718 0.231 11
16 errors 0.540 0.0919 11
17 new_league 0.314 0.118 9
18 league 0.274 0.0981 8
19 division 0.0372 0.0144 6

Plotting the variable importance from bagging

final_bag_fit |> extract_fit_engine() -> BFL
BFL$imp

A tibble: 19 x 4
term value std.error used
<chr> <dbl> <dbl> <int>

1 c_at_bat 19.2 0.571 11
2 c_runs 19.2 0.655 11
3 c_hits 18.9 0.579 11
4 crbi 16.5 0.526 11
5 c_walks 15.5 0.609 11
6 years 10.4 1.03 11
7 c_hm_run 3.29 1.43 11
8 at_bat 2.61 0.277 11
9 hits 2.49 0.254 11
10 runs 2.28 0.208 11
11 rbi 2.00 0.206 11
12 put_outs 1.47 0.285 11
13 hm_run 1.06 0.179 11
14 walks 0.955 0.145 11
15 assists 0.718 0.231 11
16 errors 0.540 0.0919 11
17 new_league 0.314 0.118 9
18 league 0.274 0.0981 8
19 division 0.0372 0.0144 6

BFL$imp[1:10,] |>
mutate(term = fct_reorder(term, value)) |>
ggplot(aes(x = term, y = value)) +

17

geom_col() +
coord_flip() +
theme_bw()

runs

hits

at_bat

c_hm_run

years

c_walks

crbi

c_hits

c_runs

c_at_bat

0 5 10 15 20
value

te
rm

Evaluating the Perfomance of your Final Tuned Model on the Test set

augment(final_bag_fit, new_data = hitters_test) |>
metrics(truth = salary, estimate = .pred) -> R3

R3 |>
knitr::kable()

.metric .estimator .estimate
rmse standard 0.2870749
rsq standard 0.5419787
mae standard 0.1717095

augment(final_bag_fit, new_data = hitters_test) |>
ggplot(aes(x = salary, y = .pred)) +
geom_abline(lty = "dashed") +

18

coord_obs_pred() +
geom_point(alpha = 0.5) +
theme_bw() +
labs(x = "Salary (log10) dollars",

y = "Predicted Salary (log10) dollars",
title = "R-squared Plot")

2.0

2.5

3.0

2.0 2.5 3.0
Salary (log10) dollars

P
re

di
ct

ed
 S

al
ar

y
(lo

g1
0)

 d
ol

la
rs

R−squared Plot

The bagged model is an improvement over the decision tree model since the 𝑅𝑀𝑆𝐸 decreased
to $1,936.76, the 𝑅2 value increased to 54.2%, and the mean absolute error decreased to
$1,484.94. Recall that the final tuned single decision tree an 𝑅𝑀𝑆𝐸 value of $1,937.23, an 𝑅2

value of 53.88% and a mean absolute error of $1,529.11.

While bagging can improve predictions for many regression methods, it is particularly useful for
decision trees. To apply bagging to regression trees, we simply construct 𝐵 regression trees
using 𝐵 bootstrapped training sets, and average the resulting predictions. Each individual
tree has high variance, but low bias. Averaging these 𝐵 trees reduces the variance. Bagging
has been demonstrated to give impressive improvements in accuracy by combining together
hundreds or even thousands of trees into a single procedure.

19

Random Forests

Random forests provide an improvement over bagged trees by way of a small tweak that decor-
relates the trees. As in bagging, we build a number of decision trees on bootstrapped training
samples. But when building these decision trees, each time a split in a tree is considered, a
random sample of 𝑚 predictors is chosen as split candidates from the full set of 𝑝 predictors.
The split is allowed to use only one of those 𝑚 predictors. A fresh sample of 𝑚 predictors is
taken at each split, and typically we choose 𝑚 = √𝑝 for classification problems and 𝑝/3 for re-
gression problems—that is, the number of predictors considered at each split is approximately
equal to the square root of the total number of predictors for classification problems or the
number of predictors is roughly 𝑝/3 at each split for regression problems.

In other words, in building a random forest, at each split in the tree, the algorithm is not even
allowed to consider a majority of the available predictors. This may sound crazy, but it has a
clever rationale. Suppose that there is one very strong predictor in the data set, along with a
number of other moderately strong predictors. Then in the collection of bagged trees, most or
all of the trees will use this strong predictor in the top split. Consequently, all of the bagged
trees will look quite similar to each other. Hence the predictions from the bagged trees will be
highly correlated. Unfortunately, averaging many highly correlated trees does not lead to
as large of a reduction in variance as averaging many uncorrelated quantities. In particular,
this means that bagging will not lead to a substantial reduction in variance over a single tree
in this setting.

The random forest algorithm overcomes this problem by forcing each split to consider only a
subset of the predictors. There fore, on average (𝑝 − 𝑚)/𝑝 of the splits will not even consider
the strong predictor, and so other predictors will have more of a chance. We can think of
this process as decorrelating the trees, thereby making the average of the resulting trees less
variable and hence more reliable.

ranger_spec <- rand_forest(mtry = tune(),
min_n = tune(),
trees = 500) |>

set_mode("regression") |>
set_engine("ranger",

importance = "impurity")
ranger_spec

Random Forest Model Specification (regression)

Main Arguments:
mtry = tune()
trees = 500
min_n = tune()

20

Engine-Specific Arguments:
importance = impurity

Computational engine: ranger

ranger_recipe <- recipe(formula = salary ~ ., data = hitters_train)

ranger_workflow <-
workflow() |>
add_recipe(ranger_recipe) |>
add_model(ranger_spec)

set.seed(309)
ranger_tune <-
tune_grid(ranger_workflow, resamples = hitters_folds, grid = 15)

ranger_tune

Tuning results
10-fold cross-validation repeated 5 times
A tibble: 50 x 5

splits id id2 .metrics .notes
<list> <chr> <chr> <list> <list>

1 <split [177/20]> Repeat1 Fold01 <tibble [30 x 6]> <tibble [0 x 3]>
2 <split [177/20]> Repeat1 Fold02 <tibble [30 x 6]> <tibble [0 x 3]>
3 <split [177/20]> Repeat1 Fold03 <tibble [30 x 6]> <tibble [0 x 3]>
4 <split [177/20]> Repeat1 Fold04 <tibble [30 x 6]> <tibble [0 x 3]>
5 <split [177/20]> Repeat1 Fold05 <tibble [30 x 6]> <tibble [0 x 3]>
6 <split [177/20]> Repeat1 Fold06 <tibble [30 x 6]> <tibble [0 x 3]>
7 <split [177/20]> Repeat1 Fold07 <tibble [30 x 6]> <tibble [0 x 3]>
8 <split [178/19]> Repeat1 Fold08 <tibble [30 x 6]> <tibble [0 x 3]>
9 <split [178/19]> Repeat1 Fold09 <tibble [30 x 6]> <tibble [0 x 3]>
10 <split [178/19]> Repeat1 Fold10 <tibble [30 x 6]> <tibble [0 x 3]>
i 40 more rows

autoplot(ranger_tune) +
theme_bw()

21

Randomly Selected Predictors Minimal Node Size

rm
se

rsq

5 10 15 10 20 30 40

0.175

0.180

0.185

0.190

0.195

0.200

0.74

0.75

0.76

0.77

show_best(ranger_tune, metric = "rmse")

A tibble: 5 x 8
mtry min_n .metric .estimator mean n std_err .config
<int> <int> <chr> <chr> <dbl> <int> <dbl> <chr>

1 6 2 rmse standard 0.175 50 0.00752 Preprocessor1_Model05
2 2 10 rmse standard 0.176 50 0.00677 Preprocessor1_Model02
3 3 21 rmse standard 0.176 50 0.00696 Preprocessor1_Model03
4 7 12 rmse standard 0.177 50 0.00763 Preprocessor1_Model06
5 11 4 rmse standard 0.178 50 0.00779 Preprocessor1_Model09

ranger_param <- tibble(mtry = 4, min_n = 15)
ranger_param <- select_best(ranger_tune, metric = "rmse")
final_ranger_wkfl <- ranger_workflow |>
finalize_workflow(ranger_param)

final_ranger_wkfl

== Workflow ==
Preprocessor: Recipe
Model: rand_forest()

-- Preprocessor --

22

0 Recipe Steps

-- Model ---
Random Forest Model Specification (regression)

Main Arguments:
mtry = 6
trees = 500
min_n = 2

Engine-Specific Arguments:
importance = impurity

Computational engine: ranger

final_ranger_fit <- final_ranger_wkfl |>
fit(hitters_train)

Plotting the variable importance

vip::vip(final_ranger_fit) +
theme_bw()

23

put_outs

at_bat

hits

c_hm_run

years

crbi

c_walks

c_hits

c_at_bat

c_runs

0 1 2 3 4 5
Importance

Evaluating the Perfomance of your Final Tuned Model on the Test set

augment(final_ranger_fit, new_data = hitters_test) |>
metrics(truth = salary, estimate = .pred) -> R4

R4 |>
knitr::kable()

.metric .estimator .estimate
rmse standard 0.2698067
rsq standard 0.5850668
mae standard 0.1575600

augment(final_ranger_fit, new_data = hitters_test) |>
ggplot(aes(x = salary, y = .pred)) +
geom_abline(lty = "dashed") +
coord_obs_pred() +
geom_point(alpha = 0.5) +
theme_bw() +
labs(x = "Salary (log10) dollars",

y = "Predicted Salary (log10) dollars",

24

title = "R-squared Plot")

2.0

2.5

3.0

2.0 2.5 3.0
Salary (log10) dollars

P
re

di
ct

ed
 S

al
ar

y
(lo

g1
0)

 d
ol

la
rs

R−squared Plot

The random forest model is an improvement over the bagged tree model since the 𝑅𝑀𝑆𝐸 value
decreased to $1,861.26 𝑅2 value increased to 58.51% and the mean absolute error decreased
to $1,437.34. Recall that the final bagged model had an 𝑅𝑀𝑆𝐸 of $1,936.76, an 𝑅2 value of
54.2%, and a mean absolute error of $1,484.94.

Boosting

Recall that bagging involves creating multiple copies of the original training data set using the
bootstrap, fitting a separate decision tree to each copy, and then combining all of the trees
in order to create a single predictive model. Notably, each tree is built on a bootstrap data
set, independent of the other trees. Boosting works in a similar way, except that the trees
are grown sequentially: each tree is grown using information from previously grown trees.
Boosting does not involve bootstrap sampling; instead each tree is fit on a modified version of
the original data set.

Like bagging, boosting involves combining a large number of decision trees ̂𝑓1, … , ̂𝑓𝐵.

25

Boosting for Regression Trees Algorithm

1. Set ̂𝑓(𝑥) = 0 and 𝑟𝑖 = 𝑦𝑖 for all 𝑖 in the training set.

2. For 𝑏 = 1, 2, … , 𝐵, repeat:

(a) Fit a tree ̂𝑓𝑏 with 𝑑 splits (𝑑 + 1 terminal nodes) to the training data (𝑋, 𝑟).
(b) Update ̂𝑓 by adding a shrunken version of the new tree:

̂𝑓(𝑥) ← ̂𝑓(𝑥) + 𝜆 ̂𝑓𝑏(𝑥).

(c) Update the residuals,
𝑟𝑖 ← 𝑟𝑖 − 𝜆 ̂𝑓𝑏(𝑥).

3. Output the boosted model,

̂𝑓(𝑥) =
𝐵

∑
𝑏=1

𝜆 ̂𝑓𝑏(𝑥).

What is the idea behind this procedure? Unlike fitting a single large decision tree to the data,
which amounts to fitting the data hard and potentially overfitting, the boosting approach
instead learns slowly. Given the current model, we fit a decision tree to the residuals from
the model. That is, we fit a tree using the current residuals, rather than the outcome 𝑌 , as the
response. We then add this new decision tree into the fitted function in order to update the
residuals. Each of these trees can be rather small, with just a few terminal nodes, determined
by the parameter 𝑑 in the algorithm. By fitting small trees to the residuals, we slowly improve

̂𝑓 in areas where it does not perform well. The shrinkage parameter 𝜆 slows the process down
even further, allowing more and different shaped trees to attack the residuals. In general,
statistical learning approaches that learn slowly tend to perform well. Note that in boosting,
unlike in bagging, the construction of each tree depends strongly on the trees that have already
been grown.

Boosting Tuning Parameters

1. The number of trees 𝐵. Unlike bagging and random forests, boosting can overfit
if 𝐵 is too large, although this overfitting tends to occur slowly if at all. We use
cross-validation to select 𝐵.

2. The shrinkage parameter 𝜆, a small positive number. This controls the rate at
which boosting learns. Typical values are 0.01 or 0.001, and the right choice can
depend on the problem. Very small 𝜆 can require using a very large value of 𝐵 in
order to achieve good performance.

3. The number 𝑑 of splits in each tree, which controls the complexity of the boosted
ensemble. Often 𝑑 = 1 works well, in which case each tree is a stump, consisting

26

of a single split. In this case, the boosted ensemble is fitting and additive model,
since each term involves only a single variable. More generally 𝑑 is the interaction
depth, and controls the interaction order of the boosted model, since 𝑑 splits can
involve at most 𝑑 variables.

xgboost_spec <-
boost_tree(trees = tune(), min_n = tune(), tree_depth = tune(),

learn_rate = tune(), loss_reduction = tune(),
sample_size = tune()) |>

set_mode("regression") |>
set_engine("xgboost")

xgboost_spec

Boosted Tree Model Specification (regression)

Main Arguments:
trees = tune()
min_n = tune()
tree_depth = tune()
learn_rate = tune()
loss_reduction = tune()
sample_size = tune()

Computational engine: xgboost

xgboost_recipe <-
recipe(formula = salary ~ . , data = hitters_train) |>
step_normalize(all_numeric_predictors()) |>
step_dummy(all_nominal_predictors(), one_hot = TRUE) |>
step_zv(all_predictors())

xgboost_recipe

xgboost_workflow <-
workflow() |>
add_recipe(xgboost_recipe) |>
add_model(xgboost_spec)

xgboost_workflow

== Workflow ==

27

Preprocessor: Recipe
Model: boost_tree()

-- Preprocessor --
3 Recipe Steps

* step_normalize()
* step_dummy()
* step_zv()

-- Model ---
Boosted Tree Model Specification (regression)

Main Arguments:
trees = tune()
min_n = tune()
tree_depth = tune()
learn_rate = tune()
loss_reduction = tune()
sample_size = tune()

Computational engine: xgboost

set.seed(753)
xgboost_tune <-
tune_grid(xgboost_workflow, resamples = hitters_folds, grid = 15)

xgboost_tune

Tuning results
10-fold cross-validation repeated 5 times
A tibble: 50 x 5

splits id id2 .metrics .notes
<list> <chr> <chr> <list> <list>

1 <split [177/20]> Repeat1 Fold01 <tibble [30 x 10]> <tibble [1 x 3]>
2 <split [177/20]> Repeat1 Fold02 <tibble [30 x 10]> <tibble [1 x 3]>
3 <split [177/20]> Repeat1 Fold03 <tibble [30 x 10]> <tibble [1 x 3]>
4 <split [177/20]> Repeat1 Fold04 <tibble [30 x 10]> <tibble [1 x 3]>
5 <split [177/20]> Repeat1 Fold05 <tibble [30 x 10]> <tibble [1 x 3]>
6 <split [177/20]> Repeat1 Fold06 <tibble [30 x 10]> <tibble [1 x 3]>
7 <split [177/20]> Repeat1 Fold07 <tibble [30 x 10]> <tibble [1 x 3]>
8 <split [178/19]> Repeat1 Fold08 <tibble [30 x 10]> <tibble [1 x 3]>

28

9 <split [178/19]> Repeat1 Fold09 <tibble [30 x 10]> <tibble [1 x 3]>
10 <split [178/19]> Repeat1 Fold10 <tibble [30 x 10]> <tibble [1 x 3]>
i 40 more rows

There were issues with some computations:

- Warning(s) x50: A correlation computation is required, but `estimate` is constant...

Run `show_notes(.Last.tune.result)` for more information.

Consider using the finetune package for tuning with the tune_race_anova() function.

set.seed(867)
library(finetune)
doParallel::registerDoParallel()
xgb_tune <-
tune_race_anova(xgboost_workflow, resamples = hitters_folds, grid = 15)

xgb_tune

Tuning results
10-fold cross-validation repeated 5 times
A tibble: 50 x 6

splits id id2 .order .metrics .notes
<list> <chr> <chr> <int> <list> <list>

1 <split [177/20]> Repeat1 Fold04 3 <tibble [30 x 10]> <tibble [3 x 3]>
2 <split [177/20]> Repeat1 Fold05 1 <tibble [30 x 10]> <tibble [2 x 3]>
3 <split [178/19]> Repeat1 Fold08 2 <tibble [30 x 10]> <tibble [3 x 3]>
4 <split [178/19]> Repeat1 Fold09 4 <tibble [18 x 10]> <tibble [0 x 3]>
5 <split [177/20]> Repeat1 Fold06 5 <tibble [14 x 10]> <tibble [0 x 3]>
6 <split [177/20]> Repeat1 Fold01 6 <tibble [10 x 10]> <tibble [0 x 3]>
7 <split [177/20]> Repeat1 Fold02 7 <tibble [10 x 10]> <tibble [0 x 3]>
8 <split [177/20]> Repeat1 Fold03 8 <tibble [10 x 10]> <tibble [0 x 3]>
9 <split [178/19]> Repeat1 Fold10 9 <tibble [10 x 10]> <tibble [0 x 3]>
10 <split [177/20]> Repeat1 Fold07 10 <tibble [8 x 10]> <tibble [0 x 3]>
i 40 more rows

There were issues with some computations:

- Warning(s) x8: A correlation computation is required, but `estimate` is constant...

Run `show_notes(.Last.tune.result)` for more information.

29

autoplot(xgb_tune) +
theme_bw()

TreesLearning Rate (log−10)Minimal Node SizeMinimum Loss Reduction (log−10)Proportion Observations SampledTree Depth

rm
se

rsq

0500100015002000−3 −2 −1 10203040−10.0−7.5−5.0−2.50.0 0.250.500.751.00 4 8 12

0.5

1.0

1.5

2.0

0.5

0.6

0.7

resamples

10

20

30

40

50

show_best(xgb_tune, metric = "rmse")

A tibble: 1 x 12
trees min_n tree_depth learn_rate loss_reduction sample_size .metric
<int> <int> <int> <dbl> <dbl> <dbl> <chr>

1 572 15 12 0.210 0.109 0.936 rmse
i 5 more variables: .estimator <chr>, mean <dbl>, n <int>, std_err <dbl>,
.config <chr>

autoplot(xgboost_tune) +
theme_bw()

30

TreesLearning Rate (log−10)Minimal Node SizeMinimum Loss Reduction (log−10)Proportion Observations SampledTree Depth

rm
se

rsq

0 500100015002000−3 −2 −1 10 20 30 40−10.0−7.5−5.0−2.50.0 0.250.500.751.00 4 8 12

0.5

1.0

1.5

2.0

0.55

0.60

0.65

0.70

0.75

show_best(xgboost_tune, metric = "rmse")

A tibble: 5 x 12
trees min_n tree_depth learn_rate loss_reduction sample_size .metric
<int> <int> <int> <dbl> <dbl> <dbl> <chr>

1 572 15 12 0.210 1.09e- 1 0.936 rmse
2 2000 18 6 0.00343 6.63e-10 0.357 rmse
3 857 34 8 0.00518 4.39e- 9 1 rmse
4 1143 4 1 0.0118 2.47e- 3 0.807 rmse
5 1714 7 14 0.0405 2.91e- 8 0.743 rmse
i 5 more variables: .estimator <chr>, mean <dbl>, n <int>, std_err <dbl>,
.config <chr>

xgboost_param <- tibble(trees = 1597, min_n = 12, tree_depth = 6,
learn_rate = 0.00444 ,loss_reduction = 0.000000282,
sample_size = 0.651)
xgboost_param <- show_best(xgboost_tune, metric = "rmse")[1,]
final_xgboost_wkfl <- xgboost_workflow |>
finalize_workflow(xgboost_param)

final_xgboost_wkfl

== Workflow ==

31

Preprocessor: Recipe
Model: boost_tree()

-- Preprocessor --
3 Recipe Steps

* step_normalize()
* step_dummy()
* step_zv()

-- Model ---
Boosted Tree Model Specification (regression)

Main Arguments:
trees = 572
min_n = 15
tree_depth = 12
learn_rate = 0.209617999245313
loss_reduction = 0.10857111194022
sample_size = 0.935714285714286

Computational engine: xgboost

final_xgboost_fit <- final_xgboost_wkfl |>
fit(hitters_train)

Plotting the variable importance

vip::vip(final_xgboost_fit) +
theme_bw()

32

runs

put_outs

at_bat

walks

c_hm_run

crbi

c_runs

years

c_hits

c_at_bat

0.0 0.1 0.2 0.3 0.4 0.5
Importance

Evaluating the Perfomance of your Final Tuned Model on the Test set

augment(final_xgboost_fit, new_data = hitters_test) |>
metrics(truth = salary, estimate = .pred) -> R5

R5 |>
knitr::kable()

.metric .estimator .estimate
rmse standard 0.2665800
rsq standard 0.5934309
mae standard 0.1565699

augment(final_xgboost_fit, new_data = hitters_test) |>
ggplot(aes(x = salary, y = .pred)) +
geom_abline(lty = "dashed") +
coord_obs_pred() +
geom_point(alpha = 0.5) +
theme_bw() +
labs(x = "Salary (log10) dollars",

y = "Predicted Salary (log10) dollars",

33

title = "R-squared Plot")

2.0

2.5

3.0

2.0 2.5 3.0
Salary (log10) dollars

P
re

di
ct

ed
 S

al
ar

y
(lo

g1
0)

 d
ol

la
rs

R−squared Plot

The boosted model is very similar to the random forest model with an 𝑅𝑀𝑆𝐸 value of
$1,847.48, an 𝑅2 value of 59.34% and a mean absolute error of $1,434.07. Recall that the
random forest had an 𝑅𝑀𝑆𝐸 value of $1,861.26, an 𝑅2 value of 58.51% and a mean absolute
error of $1,437.34.

34

	Advantages and Disadvantages of Trees
	Pros
	Cons

	The Basics of Decision Trees
	Predicting Baseball Players' Salaries Using Regression Trees
	Evaluating the Performance of your Model
	Splitting the Data

	Evaluating the Perfomance of your Final Tuned Model on the Test set
	Bagging
	Plotting the variable importance from bagging

	Evaluating the Perfomance of your Final Tuned Model on the Test set
	Random Forests
	Plotting the variable importance
	Evaluating the Perfomance of your Final Tuned Model on the Test set
	Boosting
	Plotting the variable importance
	Evaluating the Perfomance of your Final Tuned Model on the Test set

